The quantum anomalous Hall (QAH) effect can combine topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field (an environment carefully screened from magnetic fields). In a recent report on Science, M. Serlin and an interdisciplinary research team in the Department of Physics, National Institute of Materials Science and the Kavli Institute for Theoretical Physics in the U.S. and Japan detailed the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. They drove the effect via intrinsic strong interactions, which polarized the electrons into a single spin and valley resolved moiré miniband (interference pattern).
from General Physics News - Science News, Physics News, Physics, Material Sciences, Science https://ift.tt/2s4P8Jg
No comments:
Post a Comment